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ABSTRACT 

The determination of the elastic, or Young's, modulus, E, 
of the materials in each layer in an n-layered pavement system 
given the number, order, thi•knesses, and Poisson's ratios of 
the layers, and the surface load and deflection data, is not 
possible using the classical theory of elasticity alone. This 
report develops some assumptions and techniques, based on the 
effective modulus concept, Burmister's deflection equation, the 
finite element method, and the concepts of beams and plates on 
•elastic foundations, which yield mathematical solutions for such 
moduli. 
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INTRODUCTION 

The determination of the elastic, or Young's, modulus, E, of the materials in each layer in an n-layered pavement system is desirable for-- 

i. determining deterioration in pavement systems as re- flected in changes in moduli, and hence the need for rehabilitation; 

2. determining the structural behavior of pavement mate- rials and pavement systems for the purpose of opti- mizing pavement designs; and 

3. establishing quality control techniques during con- struction. 

A preliminary investigation of n-layered pavement systems by the authors has shown that given the number, order, thick- 
nesses, and Poisson's ratios of the layers, and the surface load and the dynaflect deflection data it is not possible to utilize the classical theory of elasticity alone to determine the elastic moduli of the materials in each layer. Therefore other methods 
must be employed to determine the elastic moduli of the materials in multi-layer systems. 

OBJECTIVE 

The objective of this research was to investigate the pos- sibility of determining the elastic moduli of the materials in multi- layer pavement systems from dynaflect deflection data. 

SCOPE 

The following concepts and procedures were investigated as to their individual and combined potentials- 

I. the effective moduli of pavement systems, 

2. Burmister's equation, 

3. the finite element method, and 

4. the concepts of beams •and plates on elastic foundations. 



EFFECTIVE MODULUS OF A PAVEMENT SYSTEM 

The concept of an effective modulus of a pavement system is 
based on a spring analogy extended to columns and on Boussinesq's 
settlement equation. 

Spring Analogy 

Consider a simple two-layer pavement system. If it is as- 
sumed that •, Poisson's ratio, is zero for each layer, and that 
both layers are of finite depth, the pavement system reduces to 
a spring system composed of a connected column of two subsprings 
(layers in the original problem), which may be analyzed as noted 
in reference i. 

Given the system in Figure I, one may write 

Xl k X 6 k X 6 
a 1 a 2' 

X 2 
-k X 6 + (k + k 8) X •2' 

6 • + • 
I a •' 

62 d8 and 

X 2 
0 (no external force), 

where 

61 and d2 are the deflections at the upper boundaries of 
layers 1 and 2, respectively, 

•a and 68 are the deflections within the first and second 
layers, respectively, 

X 1 and X2 are the external loads appiied to the upper bound- 
aries of layers 1 and 2, respectively, and 

k 
a 

and k8 are the 
layers, respectively. 

spring constants of the first and second 

(i) 

(2) 

(3) 

(4) 

(5) 
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Rigid Boundary 

Figure I. A two-layer spring system. 

In the two-layer spring system, if the external load 
and X2 and the stiffnesses k• and k• are known, the two unknown 
deflections, •i and •2, can be determined using equations 1 
and 2. 

In the inverse problem, only X 1 and •l are given. Rewriting 
equations 1 through 5, one obtains 

X 1 ke .6-1-_ •-, and 

X i k8 62 

Therefore, the solution for k• and k8 involves three unkn[,wns, 
ke, ks, and •2, in only two equations, equations 6 and 7. Thus, 
there are an infinity of solutions of the form 

(6) 

(7) 

k X X 
• 1 (ks' (k X • X 

I) 
e i 



However, there is one other experimentally measurable para- 
meter, kef f, which is the effective stiffness of the system. This 
parameter is defined by 

Xl k X 6 eff i' (8) 

which implies that 

eff m 

(9) 

Intuitively, this concept appears to give one additional equation 
which may be used in conjunction with equations 6 and 7 to fully 
determine k 

s 
and kB. However, equation 9 may be derived from 

equations 1 and 2, by rewriting them as. 

and 

k 7 • 
e 1 •2 

k + k 

k 2 k X k 
Xl k X • • 

X -•i 
• 8 

• 1 k + k n + k X •I keff X • 

Therefore, equation 9 does not increase the row dimension of the 
coefficient matrix. 

(i0) 

(ii) 

Extension of Spring... Analogy to Columns 

As mentioned in the previous section, kef f for a spring sys- 
tem is an experimentally measurable quantity. To extend the con- 
cept of kef f to a three-dimensional problem, one needs to determine 
the equivalent of k in the layered system Consider a column of 
height, h, cross sectional area A, and modulus E, for such a column 
under a compressive force P, the deflection at the top is 

P X h • 
A X E' (12) 

or 

p 
A x_E 

h X 6, (13) 

which is reminiscent of the spring relation 

P k X d- (14) 
AE 

,, Thus, one can see that the form q• is the stiffness" of a column. 
Extending this reasoning to an n-±ayered system, one may write 



(E/h) eff 

1 =E (E/h)i' 

or 

[ 
eff 

where 

.th 
h. is the thickness of the i layer, and h 

1 

=Eh.. 
eff • 

(15) 

(16) 

The validity of the above approach must be demonstrated using 
either known data or the Chevron(2, 3) technique in combination 
with Boussinesq's Settlement Equation (which is described below) 

Boussinesq's Settlement Equation 

Boussinesq's settlement equation (4) for the deflection under 
a flexible plate is 

2 
6 2 X (I Z •17) 

E X P X r' 

where 

p is the load intensity, and r is the radius of the bearing 
area. 

Thus, one can see that treating an n-layered system as a one-layered 
system, under the assumption that nonhomogeniety dies not radically 
affect equation 17, will yield 

2 
E 

2 X (I • X p X r 
eff 6 

(18) 

where 

Eef f is the effective modulus of the entire system. 

Eef f has been empirically related to the E i's of the layers as 

E eff E hi (19) 

by Vaswani (5) However, equation 16 is a potentially more reward- 
ing relationship between E and the E. 's. 

eff l 



BURMISTER'S DEFLECTION EQUATION 

Burmister's equation (an extension of Boussinesq's settle- 
ment equation) for deflections under a flexible bearing area for 
a two-layer elastic system (4) is 

where 

2 
• =2X (i- • )XPX rxF 

E 2 w 
(20) 

p is the load intensity, 

r is the radius of the bearing area, and 

F w, the settlement coefficient, is a function of r/h i and EI/E 2 
(charts. for F 

w 
are given in reference 4) 

This equation (when the dynaflect data are known) yields a 
solution for E, when E 2 is known and solutions for E 1 and E 2 when 
El/E2 is known. 

FINITE ELEMENT METHOD 

The finite element method can yield a complete solution for 
the n Ei's and n @i's in an n-layered pavement system, if, in 
addition to the number, order, thicknesses and Poisson's ratios 
of the layers, and the external load, n of the 2 X n Ei's and 
•i's are known. (The dynaflect deflection data, of course, yields 
the value of •i- Also, Vaswani's soil classification scheme 
would give the design Es, subgrade modulus (6)). However, this 
solution becomes progressively r•ore difficult to achieve as the 
number of unknown E i's increases. Thus knowing n-i of the E i's 
and 1 of the 6i's the solution is much simpler than that when, 
say, n-3 of the Ei's and 3 of the @i's are known. Furthermore, 
these Ei's and 6i's are not directly available for analysis. 
Thus, auxiliary methods must be employed to obtain them. 

BEAMS AND PLATES ON ELASTIC FOUNDATIONS 

Given a two-layer system composed of an infinitely long 
beam supported on an elastic foundation (spring foundation), 
and a point load, the theory of beams on elastic foundations(7,8) 
states- 

Yx 2 X k X e X (cosSx + sinSx) (21) 



and 

2 
P X •8 -Sx 8x k X e sinSx (22) 

where 

Yx is the deflection at point x (x o directly under the load), 

8 is the slope of the deflection curve at x, 
x  k > 1/4 

equals 4 X E X I 

is. the spring modulus of the foundation, 

E is the elastic modulus of the beam, 

I is the moment of inertia (second moment of area) of the 
beam and, 

P is the point load at x o. 

When values for y and @x are determined from dynaflect deflection 
data, equations 2• and 22 may be used to determine E and k. 

The application of these results to pavement deflections 
(really the theory of plates on elastic foundations (9)) requires 
that the rigidity of a plate be used in place of the rigidity of 
a beam. This is accomplished bY simply substituting Eh3/(12(1 
for EI in the expression for 8.(8) Thus an approximation for 
ment deflections may be obtained by using equations 21 and 22 
where 

8 3 X (i • x_k 
E X 

h3 

2 

pave- 

(23) 

In this manner, dynaflect data may be employed to determine E of 
the top layer of a pavement system and the combined k of the re- maining layers. 

The theory of plates on elastic foundations would, of course, 
yield better solutions than this extension of the theory of beams 
on elastic foundations would yield for E and k in a two-layer sys- 
tem. However, equations 21, 22, and 23 have analytical solutions, 
whereas the equivalent system of equations for plates on elastic 
foundations do not. Solutions to the plate equations require iter- 
ative improvement techniques and they are solvable in only certain 
instances. Thus, the authors feel that equations 21, 22, and 23 
constitute an acceptable engineering approximation to the problem 
of plates on elastic foundations. 



SOLUTIONS 

The three methods discussed above can be used for determining 
the elastic moduli of the materials in a pavement system. Based 
on these methods, five possible algorithms have been prepared for 
solution of two-layer systems, and nineteen possible combinations 
of algorithms and subalgorithms have been prepared for solution 
of three-layer systems. These algorithms are given in the Appen- 
dix. 

CONCLUS IONS 

E 1 and E 2 for two-layer pavement systems can be determined 
from various combinations of Burmister's procedure, the finite 
element method, and the Eef f concept. The requirements for sol- 
ution are that either E 1 be known from the theories of beams 
and plates on elastic foundations or that E 2 Es be known from 
Vaswani's soil classification scheme. 

El, E2, and E 3 for three-layer pavement systems can be deter- 
mined from various combinations of Burmister's procedure, the 
finite element method, and Eeff concept, and the treatment of com- binations of layers as single layers. The requirements for solu- 
tion are that both E 1 and E3 Es be known from the theories of 
beams and plates on elastic foundations and Vaswani's soil clas- 
sification scheme, respectively. 

RECOMMENDATIONS 

This report has demonstrated that two and three-layer prob- 
lems are theoretically solvable. Thus, the authors recommend 
that the techniques presented in this report be systematically 
employed, evaluated, and, if necessary, modified based on field 
data. The authors further recommend that the most appropriate 
techniques as determined from such evaluations be presented to 
the Department in implementable forms such as computer programs 
or sets of graphs. 
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APPENDIX 

S OLUT I ON AL GO RI THMS 

Figures A-l, A-2, 
solution algorithms. 

and A-3 illustrate the notation used in the 

Two-Layer Systems 

Algorithm 1 

1. Estimate E2 
scheme(5) 

using Vaswani's soil 
(vscs). 

2. Determine E 1 
using Burmister's 

classification 

equation. (4) 

Algori thin 2 

Determine E 1 using equations 21, 22, and 23. 

Determine E 2 and 62 using the finite element method, (FEM) °. 

Algorithm 3 

Determine E 1 using equations 21, 22, and 23. 

2. Determine Eef f using equation 18. 

3. Determine E 2 using equation 16. 

Algorithm 4 

i. Estimate E2 us ing VSCS. 

2. Determine Eef f using equation 18. 

3.• Determine El using equation 16. 

Algorithm 5 

Estimate E2 using VSCS. 

Determine E 1 and 62 using the FEM. 

Three-Layer Systems 

Algorithm 6 

i. Determine E 1 
using equations 21, 

2. Estimate E3 
3. Determine E 

us ing VSCS. 

using equation 18. ff 

and 

4. Determine E 2 
using equation 16. 

A-I 



•g%rithm 
i. Determine 

2. Estimate 

3. De te rmi n e 

Subalgorithm A 

E 1 using equations 21, 22, and 

E3 us ing VSCS. 

E2' @2' and @3 using the FEM. 

Given E l, E23, and E 3. 

Determine E 2 
using 

h h2•3 h2 
+ 

3 
E23 E 2 E 3 

Subalgorithm B 

(AI) 

Given E l, El2, and E 3. 

Determine E 2 
using 

h12 h 
I 

h 
2 

E E E 12 1 2 
(A2) 

Algorithms 8, 9, I0 

i. Treat the top two layers as a single layer. 

2. Apply Algorithm 1 to determine El2 and E 3. 
(8) 3. Determine E 1 using equations 21, 22, and 23. 

(9) 3. Determine E 1 
using steps 1 and 2 of any Algorithm 17 

through 20. 

(i0) 3. Determine E 1 
using steps 1 and 2 of 

through 24. 

Apply Subalgorithm B. 

any Algorithm 21 

Algorithms Ii, 12, 13 

i. Treat the top two layers as a single layer. 

2. Apply Algorithm 4 to determine El2 and E 3. 

(Ii) 3. 

(12) 3 Same as Algorithms 8, 9, i0, respecti.vely. 
(13) 3 

4. Apply subalgorithm B. 



Algorithms 14, 15, 16 

i. Treat the top two layers as a single layer. 

2. Apply Algorithm 5 to determine El2 and E 3. 

(15) 3. 

(16) 3. 

Same as Algorithms 8, 9, 10, respectively. 

Apply Subalgorithm B. 

Algorithms 17, 18, 19, 20 

i. Treat the bottom two layers as a single layer. 

2. Apply Algorithm 2 to determine E 1 
and E23. 

(17) 3. 

(18) 3. 

Determine E 3 

Determine E 3 
through i0. 

using VSCS. 

using steps 1 and 2 of any Algorithm 8 

(19) Determine E 3 
through 13. 

using steps 1 and 2 of any Algorithm ll 

(20) 3. Determine E3 
through 16. 

using steps 1 and 2 of any Algorithm 14 

Apply Subalgorithm A. 

Algorithms 21, 22, 23, 24 

i. Treat the bottom two layers as a single layer. 

(21) 3. 

(22) 3 
Same 

(23) 3 

(24) 3 

Apply Algorithm 3 to determine E 1 
and E23. 

as Algorithms 17, 18, 19, 20, re spe ctiw:_ •ly. 

Apply Subalgorithm A. 
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E 2 h 

R±g±d Boundary 

Figure AI. Two-layer system. 

I •i 
h E 1 

E 
3 

Rigid Boundary 

h 

Figure A2. Three-layer system. 
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