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ABSTRACT

The determination of the elastic, or Young's, modulus, E,
of the materials in each layer in an n-layered pavement system
given the number, order, thicknesses, and Poisson's ratios of
the layers, and the surface load and deflection data, is not
possible using the classical theory of elasticity alone. This
report develops some assumptions and techniques, based on the
effective modulus concept, Burmister's deflection equation, the
finite element method, and the concepts of beams and plates on
elastic foundations, which yield mathematical solutions for such
moduli.
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INTRODUCTION

The determination of the elastic, or Young's, modulus, E,
of the materials in each layer in an n-layered pavement system
is desirable for --

l. determining deterioration in pavement systems as re-
flected in changes in moduli, and hence the need for
rehabilitation;

2. determining the structural behavior of pavement mate-
rials and pavement systems for the purpose of opti-
mizing pavement designs; and

3. establishing quality control techniques during con-
struction.

A preliminary investigation of n-layered pavement systems
by the authors has shown that given the number, order, thick-
nesses, and Poisson's ratios of the layers, and the surface load
and the dynaflect deflection data it is not possible to utilize
the classical theory of elasticity alone to determine the elastic -
moduli of the materials in each layer. Therefore other methocCs
must be employed to determine the elastic moduli of the materials
in multi-layer systems.

OBJECTIVE
The objective of this research was to investigate the pos-

sibility of determining the elastic moduli of the materials in
multi-layer pavement systems from dynaflect deflection data.

SCOPE

The following concepts and procedures were investigated as
to their individual and combined potentials:

1. the effective moduli of pavement systems,
2. Burmister's equation,
3. the finite element method, and

4. the concepts of beams and plates on elastic foundations.



EFFECTIVE MODULUS OF A PAVEMENT SYSTEM
The concept of an effective modulus of a pavement system is

based on a spring analogy extended to columns and on Boussinesq's
settlement equation.

Spring Analogy

Consider a simple two-layer pavement system. If it is as-
sumed that u, Poisson's ratio, is zero for each layer, and that
both layers are of finite depth, the pavement system reduces to
a spring system composed of a connected column of two subsprings
(layers in the original problem), which may be analyzed as noted
in reference 1.

Given the system in Figure 1, one may write

Xl = ka X 61 - ka X 62,

X, = _ka X 61 f (#a + kB) X 52,
61 = 6& + 68,

62 = 68, and

X, = 0 (no external force),

where

§1 and &, are the deflections at the upper boundaries of
layers 1 and 2, respectively,

5@ and 6g are the deflections within the first and second
layers, respectively,

X1 and X2 are the external loads appiied to the upper bound-
aries of layers 1 and 2, respectively, and

k, and kg are the spring constants of the first and second
layers, respectively.

(1)

(2)

(3)

(4)

(5)
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Figure 1. A two-layer spring system.

In the two-layer spring system, if the external loac
and X2 and the stiffnesses k; and kg are known, the two unknown
deflections, 61 and &2, can be determined using equations 1
and 2.

In the inverse problem, only Xj] and 87 are given. Rewriting
equations 1 through 5, one obtains

Xy
k e and (6)
o 61 62
X
kg = -S—l- (7)
2

Therefore, the solution for k, and kg involves three unknuwns,
k.-, kB’ and §5, in only two equations, equations 6 and 7. Thus,
tﬁere are an infinity of solutions of the form

ka X Xl

(k. , =
o (ka X 61) X

)
1
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However, there is one other experimentally measurable para-
meter, keofg, Which is the effective stiffness of the system. This
parameter is defined by

which implies that

}E:k C(9)

Intuitively, this concept appears to give one additional equation
which may be used in conjunction with eqguations 6 and 7 to fully
determine ky and kg. However, equation 9 may be derived from
equations 1 and 2, by rewriting them as

eff

8, = ;g“éféi (10)
o B
and
K2 x 8,k x kg
Xp = ky X 81 " Ee T R X 81 = Kegs X O1- (11)
o B o B

Therefore, equation 9 does not increase the row dimension of the
coefficient matrix.

Extension of Spring Analogy to Columns

As mentioned in the previous section, keff for a spring sys-
tem is an experimentally measurable gquantity. To extend the con-
cept of keff to a three-dimensional problem, one needs to determine
the equivalent of k in the layered system. Consider a column of
height h, cross sectional area A, and modulus E, for such a column
under a compressive force P, the deflection at the top is

P xh

6 = g | (12)
or
p=2XE 5, (13)

which is reminiscent of the spring relation
P =%k x 6. (14)

Thus, one can see that the form AR is the "stiffness" of a column.
Extending this reasoning to an n?gayered system, one may write



T oif - Y wT (B/M) | (15)

or

(%)eff =Z(%)i’ " e

. . .th _
hi is the thickness of the i layer, and heff —Zhi.

The validity of the above approach must be demonstrated using
either known data or the Chevron(2:3) technique in combination
with Boussinesg's Settlement Equation (which is described below).

Boussiinesq's Settlement Equation

Boussinesq's settlement equation(4) for the deflection under
a flexible plate is

2
s=2x 1wy py oy, (17)

where

p is the load intensity, and r is the radius of the bearing
area.

Thus, one can see that treating an n-layered system as a one-layered
system, under the assumption that nonhomogeniety dies not radically
affect equation 17, will yield

2
- 2x (1 -u) xpxrx
E ¢ 5 , (18)

where
Ecff 1s the effective modulus of the entire system.

E.ff has been empirically related to the Ej's of the layers as

=Z(hi X Ey
eff Zhi

by vaswani (3) . However, equation 16 is a potentlally more reward-
ing relationship between E eff and the E

E (19)
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BURMISTER'S DEFLECTION EQUATION

Burmister's equation (an extension of Boussinesq's settle-
ment equation) for deflections under a flexible bearing area for
a two-layer elastic system(4) is

2
_ 2 x (1 - um o
6 = E, X P XTrXxE, (20)

where
p is the load intensity,
r is the radius of the bearing area, and

F,r the settlement coefficient, is a function of r/hji and Ej/E>
(charts for F, are given in reference 4).

This equation (when the dynaflect data are known) yields a
solution for E, when Ej is known and solutions for Ej and E) when
El/EZ is known.

FINITE ELEMENT METHOD

The finite element method can yield a complete solution for
the n Ei's and n §;'s in an n-layered pavement system, if, in
addition to the number, order, thicknesses and Poisson's ratios
of the layers, and the external load, n of the 2 x n Ej's and

§i's are known. (The dynaflect deflection data, of course, yields
the value of §;. Also, Vaswani's soil classification scheme
would give the design Eg, subgrade modulus (6)) . However, this

solution becomes progressively more difficult to achieve as the
number of unknown Ej's increases. Thus knowing n-1 of the Eji's
and 1 of the ¢;'s the solution is much simpler than that when,
say, n-3 of the Ej's and 3 of the §;i's are known. Furthermore,
these Ej's and §4i's are not directly available for analysis.
Thus, auxiliary methods must be employed to obtain them.

BEAMS AND PLATES ON ELASTIC FOUNDATIONS

Given a two-layer system composed of an infinitely long
beam supported on an elastic foundation (spring foundation),
and a point load, the theory of beams on elastic foundations (7:8)
states: ,

y. = PXx8 X e-‘BX X (cosBx + sinBfx) (21)



and
Py 8% -Bx

6, =~ —% 7 x e sinBx (22)
where

Yy is the deflection at point x (x = o directly under the load),

ex is the slope of the deflection curve at x,

k 1/4
B equals(z—i—ﬁ—z—f ’

k is the spring modulus of the fbundation,
E is the elastic modulus of the beam,

I is the moment of inertia (second moment of area) of the
beam and,

P is the point load at x = o.

When values for y, and 6y are determined from dynaflect deflection
data, equations Zf and 22 may be used to determine E and k.

The application of these results to pavement deflections
(really the theory of plates on elastic foundations (9)) requires
that the rigidity of a plate be used in place of the rigidity of
a beam. This is accomplished b§ simply substituting Eh3/(12(1 - u”~)
for EI in the expression for &( ) Thus an approximation for pave-
ment deflections may be obtained by using equations 21 and 22
where

2 1/4 |
8 =(? x (1 - u™) x k) (23)

2

B X h3
In this manner, dynaflect data may be employed to determine E of

the top layer of a pavement system and the combined k of the re-
maining layers.

The theory of plates on elastic foundations would, of course,
yield better solutions than this extension of the theory of beams
on elastic foundations would yield for E and k in a two-layer sys-
tem. However, equations 21, 22, and 23 have analytical solutions,
whereas the equivalent system of equations for plates on eliastic
foundations do not. Solutions to the plate equations require iter-
ative improvement techniques and they are solvable in only certain
instances. Thus, the authors feel that equations 21, 22, and 23
constitute an acceptable engineering approximation to the problem
of plates on elastic foundations.
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SOLUTIONS

The three methods discussed above can be used for determining
the elastic moduli of the materials in a pavement system. Based
on these methods, five possible algorithms have been prepared for
solution of two-layer systems, and nineteen possible combinations
of algorithms and subalgorithms have been prepared for solution
of three-layer systems. These algorithms are given in the Appen-
dix.

CONCLUSIONS

Ej and E; for two-layer pavement systems can be determined
from various combinations of Burmister's procedure, the finite
element method, and the Eqff concept. The requirements for sol-
ution are that either E] be known from the theories of beams
and plates on elastic foundations or that Ey = Eg be known from
Vaswani's soil classification scheme.

Eil, E2, and E3 for three-layer pavement systems can be deter-
mined from various combinations of Burmister's procedure, the
finite element method, and Eeff concept, and the treatment of com-
binations of layers as single layers. The requirements for solu-
tion are that both Ej] and E3 = Eg be known from the theories of
beams and plates on elastic foundations and Vaswani's soil clas-
sification scheme, respectively.

RECOMMENDATIONS

This report has demonstrated that two and three-layer prob-
lems are theoretically solvable. Thus, the authors recommend
that the techniques presented in this report be systematically
employed, evaluated, and, if necessary, modified based on field
data. The authors further recommend that the most appropriate
techniques as determined from such evaluations be presented to
the Department in implementable forms such as computer programs
or sets of graphs.
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APPENDIX R

SOLUTION ALGORITHMS

Figures A-1, A-2, and A-3 illustrate the notation used in the
solution algorithms.

Two—-Layer Systems

Algorithm 1

1. Estimate E, using Vaswani's soil classification
scheme (5) ,“ (vscs) .

2. Determine El using Burmister's equation. (4)

Algorithm 2

1. Determine E] using eguations 21, 22, and 23.

2. Determine E and 82 using the finite element method, (FEM)-.

Algorithm 3
1. Detérmine E] using equations 21, 22, and 23.
2. Determine Egff using equation 18.
3. Determiﬁe Ey using equation 16.
Algorithm 4
1. Estimate Ej using VSCS.
2. Determine Egoff using equation 18.
3. Determine Ej] using equation 16.
Algorithm 5
1. Estimate E using VSCS.

2. Determine Ej and 8§, using the FEM.

Three-Layer Systems

Algorithm 6
1. Determine E1 using equations 21, 22, and 23.

2. Estimate E, using VSCS.

3
3. Determine Ece using equation 18.

4, Determine E, using equation 16.
A-1



Algorithm 7

1. Determine El using equations 21, 22, and 23.
2. Estimate E3 using VSCS.
3. Determine E,y 62, and 63 using the FEM.

Subalgorithm A

l. Given El’ E23, and E3.

2. Determine E2 using
a3 _ P2, D5 (a1)
E E E

Subalgorithm B

1. Given El’ E12’ a1d E

3
2. Determine E, using
M2 _ M1, D2 (82)
E E E,’

Algorithms 8, 9, 10
1. Treat the top two layers as a single layer.

2. Apply Algorithm 1 to determine E and E.,.

12 3
(8) 3. Determine El using equations 21, 22, and 23.

(9) 3. Determine E, using steps 1 and 2 of any Algorithm 17
through 20.

(10) 3. Determine E, using steps 1 and 2 of any Algorithm 21
through 24.

4. Apply Subalgorithm B.
Algorithms 11, 12, 13
l. Treat the top two layers as a single layer.

2. Apply Algorithm 4 to determine E and E,.

12 3

(12) 3.) Same as Algorithms 8, 9, 10, respectively.

4. Apply subalgorithm B.

A-2



Algorithms 14,

l.

2'

(14) 3.)

(15) 3.

(16)

3.
4‘

15, 16

e
WA
Tm

Treat the top two layers as a single layer.

Apply Algorithm 5 to determine
Same as Algorithms 8, 9,

10,

Apply Subalgorithm B.

Algorithms 17, 18, 19, 20

(17)

(18)

(19)

(20)

Algorithms 21, 22, 23,

(21)
(22)
(23)
(24)

4.

Treat the bottom two layers as
Apply Algorithm 2 to determine

Determine E

3 using

VSES.

Determine E 1 and

3
through 10.

using steps

Determine E 1 and

3
through 13.

using steps

Determine E 1 and

3
through 16.

using steps

Apply Subalgorithm A.
24
Treat the bottom two layers as

Apply Algorithm 3 to determine

Same as Algorithms 17, 18, 19,

Apply Subalgorithm A.

E12 and E3.

respectively.

a single layer.

El and E23.

2 of any Algorithm 8

2 of any Algorithm 11

2 of any Algorithm 14

a single layer.

El and E23.

20, respectively.
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Figure Al. Two-layer system.
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Figure A2. Three-layer system.
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